

Box 850 Salmo, B.C. VOG 1Z0

Phone: 250/357-9479

Fax: 250/357-9412

January 5, 2022

Biodiversity Analysis

FL A30171 CP 416 - Bulmer Face

Cooper Creek Cedar Ltd is proposing a cutting permit (CP 416) in the Bulmer Face area. The Kootenay Boundary Higher Level Plan Order (2002) established legal requirements for Mature + Old seral stage targets with specific requirements by Landscape Unit - BEC/NDT type pairings and within connectivity corridor.

The proposed CP 416 falls within the following Landcape Unit / BEC pairings, with the associated targets as per KBHLPO Objective 2:

Landscape	Natural	Biodiversity	Mature	Mature	Old Target	Old (yrs)
Unit /BEC	Disturbance	Emphasis	Target %	(yrs)	%	
Pairing	Туре	Option				
K16 / ICHdw	3	L	N/A	101+	4.7	141+
K16/	2	L	N/A	101+	3.0	251+
ICHmw2						

Mature + Old

LU K16/ ICHmw2 and LU K16/ ICHdw do not have Mature + Old seral forest targets and therefore no targets in Connectivity Corridor either.

Mature + Old analysis is not applicable to the unit combinations associated with CP 416.

Old

Cooper Creek Cedar's FSP (2018 to 2023 Forest Stewardship Plan for Cooper Creek Cedar Ltd – Forest Licence A30171) Section 3.5.3 states Old Forest requirements will be met through spatially, non-legal Old Growth Management Areas (OGMA's) (Method 1). This applies to the proposed CP 416.

In May 2019 the District distributed a letter identifying Landscape Unit/BEC pairings falling short of meeting Old Forest targets. The LU/BEC pairings in this analysis are not on that list. The guidance also suggested licensees analyze Old Forest cover (Method 2) to be cognizant of seral stage distribution prior to logging Old forest. There is planned harvest of Old in LU K16/ ICHdw and no planned harvest of Old in LU K16 ICHmw2.

There is no planned harvest of OGMA in CP 416.

SUMMARY:

Analysis shows **targets for Old will be met** after harvesting of CP 416 spatially through non-legal OGMA's in both LU K16/ICHmw2 & K16/ICHdw (Method 1). Analysis shows actual, aspatial **surpluses of Old** in both LU/BEC pairings post harvest (Method 2).

Post – CP 416 Harvest Old Area Calculation LU K16 ICHdw (in hectares):

OGMA as Old (Method 1)

Total Area	Target Area (4.7%)	Actual Area in	Old Area Surplus	Old Area in
		OGMA		Connectivity
				Corridor
1797.7	85.4	340.4	255.9	184.8

Actual Old (Method 2)

Total Area	Target Area (4.7%)	Total area	Old Area Surplus	Old Area in
		contributing as		Connectivity
		Old		Corridor
1797.7	85.4	216.1	131.6	171.1

Post – CP 416 Harvest Old Area Calculation LU K16 ICHmw2 (in hectares):

OGMA as Old (Method 1)

Total Area	Target Area (3%)	Actual Area in OGMA	Old Area Surplus	Old Area in Connectivity
				Corridor
8130.0	243.9	2212.3	1968.4	372.6

Actual Old (Method 2)

Total Area	Target Area (3%)	Total area	Old Area Surplus	Old Area in
		contributing as		Connectivity
		Old		Corridor
8130.0	243.9	951.7	707.8	433.2

Source: Selkirk Geospatial Research Centre's Higher Level Plan Order Reporting Suite. Queried January 5, 2022. Data updated annually.

Tom Haukaas, RFT

Post-harvest biodiversity analysis including proposed CP 416. (Hectares)

9	o	7	6	5	4	ω	2	_			9	8	7	6	5	4	ω	2	_		Т																										
Surplus/Deficit to Target (ha)		Connectivity	(ha)	Actual Area	Target Area	Target %	Age	BEO: L NDT: 2	LU: K16 BGC: ICHmw2	PART 2	Surplus/Deficit to Target (ha)	Area (ha)	Connectivity	(ha)	Actual Area	Target Area	Target %	Age	BEO: L NDT: 3	LU: K16 BGC: ICHdw	PART 2																										
1968.4	372.6	In	2212.3	In OGMA	243.9	3.0	All	Method1	OGMA	BA	255.9	184.8	⋾	340.4	In OGMA	84.5	4.7	All	Method1	OGMA (as OLD)	BA																										
8,4	1839.	Out	2.3	3MA	.9		=	od1	J A	88	9	155.6	Out	.4	3MA	5	7	=	od1	D W	88																										
n/a	5605.2	ī	6077.5	Total	n/a	n/a	All	Method1	MATURE + OLD	CA	n/a	1354.8	5	1390.2	Total	n/a	n/a	All	Method1	MATURE + OLD (OGMA as OLD)	CA																										
n/a	472.3	Out	7.5	tal	а	а		10d1	E + OLD	СВ	n/a	35.5	Out	0.2	tal	a	а	=	10d1	E + OLD as OLD)	CB																										
	13.8	ln	532.4	ln O						DA	,	76.3	<u>=</u>	117.8	ln O						DA																										
	518.6	Out	2.4	In OGMA						DB		41.5	Out	7.8	In OGMA						DB																										
	0.0	ln	.0	Out OGMA 0.0	Out (Out (-	OLD SI	DC		93.5	'n	97.0	Out OGMA				_	OLD SI	DC																								
	0.0	Out			243.9	243.9	243.9	243.9	243.9	243.9	243.9	243.9	3.0	251+	Method 2	OLD SERAL FOREST	DD		3.5	Out	.0	GMA	84.5	4.7	141+	Method 2	OLD SERAL FOREST	8																			
	419.4	In/Out	419.4	Park																						DREST	DE		1.3	In/Out	1.3	Park				2	DREST	Æ									
707.8	433.2	In	951	Tota	Tota	Total 951.7	Tot. 951.	Tot 951.	Tot 951.	Tot 951.	Tot 951.	Tot. 951.	Tota 951.	Tot																								무	131.6	171.1		Total					
.80	518.6	Out	.7	al																										BG	.6	45.0	Out		a						G						
	345.8	ī	1794	In OGMA Out O											ΕA		149.3	5	301.1	In OGMA						EA																					
	1448.	Out	.2					n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2	n/a	n/a															MATI	8		151.8	Out		MA				
	1244.	'n	1716.7		Out Oc	Out Oc	Out OGMA																		n/a		V	Out OGMA Out OGMA 1017.3 In Out 981.9 35.5 EC ED URE + OLD S				~	MATURE + OLD SERAL FOREST	EC													
	472.3	Out		3MA	n/a	n/a	n/a																n/a	n/a		n/a	n/a	101+	Method 2	Na	n/a	101+	Method 2	LD SER	8												
	2148.	In/Out	2148.	Park																											AL FOR	EE		32.5 1	In/Out	32.5	Park					AL FOR	H				
n/a	3738.8	ī	5659.4	Total																ST	띢	n/a	1163.7	⋾	1351.0	Total					ST	#															
n/a	1920.7	Out	.4	4										EG	n/a	187.3	Out	.0	3						EG																						
	332.1	ī	1261	1261	1261.9	1261	1261	1261	1261	1261	1261	1261	1261	1261	1261	1261	1261	1261	In OGMA						FA		73.0	=	183.3	In OGMA						FA											
	929.8	Out	.9	MA					M	Ŧ		110.3	Out	3	MA					M	8																										
	1244. 4	'n	1716.7	Out og	Out OGMA	Out Oc	Out OG														10	for	TURE S	FC		888.4	5	920.4	Out OGMA 920.4			10	for	TURE S	FC												
	472.3	Out	Park 1729. 4				_	_	_			_		+										101-250	for info only	MATURE SERAL FOREST	FD		32.0	Out					101-140	for info only	MATURE SERAL FOREST	3									
	1729.	In/Out		Park 1729.	Park 1729		Park 1729.				'	OREST	Æ		31.2	In/Out	31.2	Park					OREST	A																							
	3305. 1	İn		4707	4707	4707	4707	Total			113 992.6							#																													
	1402.	Out	otal 7.7							FG		142.3	Out	.9	32						FG																										